2.7.1 열 생성 (Thermal Generation) > 생성(Generation)은 재결합(Recombination)과 반대되는 개념이다. > 온도가 0이 아니면 전자-정공 쌍(EHP) 계속적으로 생성된다. > 이를 열 생성이라고 한다. > 열 에너지로 인해 생성된 전자와 정공은 다시 재결합에 의해 소멸된다. > 만약 n' = p' = 0 이면 열 생성과 재결합 비율은 같다. (n', p'를 모른다면 이전 글 참고 https://debonair91.tistory.com/30) > n' > 0 이면 과잉 캐리어가 많아지기 때문에 열 생성 비율보다는 재결합 비율이 더 존재한다. > n' np = ni^2 일 때 열 생성의 비율은 재결합 비율과 같다. > np > ni^2 일 때 재결합 비율이 높다. >..
2.6.1 Recombination > 열 평형 상태에서 전자 정공의 농도를 n0, p0로 표기한다. > 외부에서 빛을 가해주게 된다면 Valence Band에 있는 Conduction Band로 올라가게 되면서 전자 - 정공 쌍 (EHP Electron Hole Pair)을 만든다. > 이렇게 발생하는 캐리어의 농도를 과잉 캐리어 농도라고 한다. (n', p') > 빛으로 인해 과잉 캐리어가 생기면 전자 정공 쌍으로 생기기 때문에 n' 과 p' 의 농도가 같다. > 그럼 빛이 꺼지면 n', p'는 줄어들게 되며 캐리어 농도 n, p는 열 평형 상태의 캐리어 농도 n0, np로 돌아가게 된다. > 그 동안 만들어졌던 과잉 캐리어 전자들은 Conduction Band에서 Valence Band의 정공에 자..
2.5.1 아인슈타인 관계식 > 열 평형 상태에서는 Ef (페르미 레벨)은 일정하다. > 그림 1. 에서 n type으로 왼쪽이 오른쪽보다 더 많이 도핑되어 있다. > 도핑이 더 많이 되어 있는 왼쪽의 Ec는 Ef에 가깝다. > 따라서 Ec는 일정하지 않기 때문에 전계가 오른쪽으로 작용한다. > 하지만 반도체는 평형 상태이기 때문에 전류 밀도 J는 0 이다. > 이를 통해서 D(확산 계수) 와 𝝁(모빌리티) 관계식을 구할 수 있다. > 이 관계식을 아인슈타인 관계식이라고 하며 D, 𝝁 중 하나만 알면 다른 하나를 구할 수 있다. 2.5.1 The Einstein Relationship > In a state of thermal equilibrium, the Fermi level (Ef) remains c..
2.4.1 에너지 밴드 디이어그램 > 반도체 물체를 가로질러 전압을 가하면 EBD(Energy Band Diagram)는 변한다. > 전압이 가해지면 양의 전하의 위치 에너지를 증가시키고 음의 전하의 위치 에너지를 감소시킨다. > 전류는 에너지가 높은 곳에서 낮은곳으로 흐른다. 즉 정공은 에너지가 높은 곳에서 낮은 곳으로 전자는 낮은 곳에서 높은 곳으로 이동한다. > EBD는 전자 기준으로 그려진것이기 때문에 전압이 가해지면 Ec와 Ev는 내려간다. > 그림 1. 처럼 Ec, Ev는 전압이 낮은 곳일수록 위로 올라가고 높은 곳일수록 낮게 내려간다. > 전자는 EBD에서 돌과 같이 굴러가고 정공은 거품처럼 올라온다. 2.4.1 Energy Band Diagram > Applying a voltage to ..
- Total
- Today
- Yesterday
- Fiber Optic
- Acceptor
- Reverse Bias
- 반도체
- Blu-ray
- semiconductor
- C언어 #C Programming
- Diode
- CD
- Solar cell
- Thermal Noise
- Laser
- Depletion Layer
- fermi level
- Charge Accumulation
- Pinch Off
- 쇼트키
- PN Junction
- Energy band diagram
- 문턱 전압
- EBD
- Optic Fiber
- Donor
- MOS
- 열전자 방출
- pn 접합
- 광 흡수
- channeling
- Semicondcutor
- 양자 웰
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |